(Ten Minutes of) Tau Tagging April 4, 2014: BNL Energy Frontier Workshop Sarah Demers Yale University ### Taus Lifetime: 10⁻¹³ s Missing energy in decay | Channel | Dominant Decay Mode | BR[%] | |---------------------------|---|-----------------| | $e^-\bar{\nu}\nu$ | $e^-\bar{\nu_e}\nu_{\tau}$ | $17.82 \pm .04$ | | $\mu^- \bar{\nu} \nu$ | $\mu^- \bar{\nu_\mu} \nu_ au$ | $17.39 \pm .04$ | | $h^-\nu$ | $\pi^- u_ au$ | $11.61 \pm .06$ | | $h^-\pi^0\nu$ | $ ho^- u_ au ightarrow \pi^-\pi^0 u_ au$ | $25.94 \pm .09$ | | $h^-\pi^0\pi^0(\pi^0)\nu$ | $a_1^- u_ au o \pi^- \pi^0 \pi^0 u_ au$ | $10.85 \pm .11$ | | $h^-h^-h^+(\pi^0)\nu$ | $a_1^- \nu_\tau \to \pi^- \pi^- \pi^+ \nu_\tau$ | $14.56 \pm .07$ | ### Colliding Fundamental Particles vs. Colliding Hadrons Snapshot of results from 2008 BaBar paper, just to illustrate the different world of physics in the two environments . . | Decay Mode | World Average | BABAR Measurement | |---|--|--| | $ \tau^{-} \rightarrow K^{-} \pi^{0} \nu_{\tau} $ $ \tau^{-} \rightarrow \pi^{-} \pi^{-} \pi^{+} \nu_{\tau} $ $ \tau^{-} \rightarrow K^{-} \pi^{-} \pi^{+} \nu_{\tau} $ $ \tau^{-} \rightarrow K^{-} \pi^{-} K^{+} \nu_{\tau} $ $ \tau^{-} \rightarrow K^{-} K^{-} K^{+} \nu_{\tau} $ $ \tau^{-} \rightarrow \phi \pi^{-} \nu_{\tau} $ $ \tau^{-} \rightarrow \phi K^{-} \nu_{\tau} $ | $(4.54 \pm 0.30) \times 10^{-3}$ (PDG Avg. [12])
$(9.02 \pm 0.08) \times 10^{-2}$ (PDG Fit. [12])
$(3.33 \pm 0.35) \times 10^{-2}$ (PDG Fit. [12])
$(1.53 \pm 0.10) \times 10^{-2}$ (PDG Fit. [12])
$< 3.7 \times 10^{-5} CL = 90\%$ [12]
$< 2.0 \times 10^{-4} CL = 90\%$ [12]
$(4.06 \pm 0.25 \pm 26) \times 10^{-2}$ [13] | $(4.16 \pm 0.03 \pm 0.18) \times 10^{-3}$ $(8.83 \pm 0.01 \pm 0.13) \times 10^{-2}$ $(2.73 \pm 0.02 \pm 0.09) \times 10^{-3}$ $(1.346 \pm 0.010 \pm 0.036) \times 10^{-3}$ $(1.58 \pm 0.13 \pm 0.12) \times 10^{-5}$ $(3.42 \pm 0.55 \pm 0.25) \times 10^{-5}$ $(3.39 \pm 0.20 \pm 0.28) \times 10^{-5}$ | #### Is this likely a tau that decayed semi-hadronically? and not an electron muon or jet? #### What kind of physics can I do with it? Hey, I got a tau! **Access Polarization** **Hunt for Rare Decays** April 4, 2013 4 #### Tau vs. Jet Discrimination ATLAS: Mainly Boosted Decision Trees CMS: Classifiers based on Particle Flow tau decay constituents April 4, 2013 5 ## ATLAS Identification Variables Hadronic Radius: weighted shower width Calorimetric Radius: weighted shower width Track Radius: weighted track width Leading Track Momentum Fraction Fraction of Energy in Core Electromagnetic Fraction Calorimeter Cluster Mass Track System Mass Transverse Flight Path Significance of 2nd Vertex Isolation Leading Track Impact Parameter Significance ATLAS-CONF-2012-142 #### Stability with Pile-up (2011) #### CMS classifiers ## Performance Examples: $W \rightarrow \tau v$ selection **BEFORE** "tight" tau Identification (tuned for 30% signal efficiency) ### **AFTER** "tight" tau Identification (tuned for 30% signal efficiency) April 4, 2013 7 ### A jet is not a jet is not a jet leading jets, sub-leading jets, etc. pile-up influencing jet clustering track multiplicity jet transverse momentum quark-initiated jets vs. gluon-initiated jets #### Tau vs. Electron Discrimination a 1-track tau can look quite a bit like an electron At ATLAS, a high fraction of electrons are reconstructed as tau candidates, and pass the identification stage that was designed to veto jets Particle ID capabilities in the tracker is hugely helpful! ## Electron Veto Performance: Z -> ee events Tight requirement on one electron, require tau candidate in event, no background subtraction in plots below. #### **BEFORE** tau ID and electron veto #### **AFTER** tau ID and electron veto #### Tau vs. Muon Discrimination Muon vs. Tau separation is not typically a concern, assuming EM and HAD calorimeters have fine enough granularity. Fraction of transverse energy of tau candidate deposited in electromagnetic calorimeter ## On Not Underestimating the Power of Statistics Measurements that rely on tau polarization CAN be done at hadron colliders | Process | P _τ Prediction | |----------------------|---------------------------| | W [±] -> τν | -1 | | H±-> τν | +1 | | Ζ -> ττ | ≈ -0.15 | | Η -> ττ | 0 | $$P_{\tau} = -1.06 \pm 0.04 \, (stat) \, ^{+0.05}_{-0.07} \, (syst)$$ ## And the elephant in the room # Summary: What We Want for Tau Tagging - Good Tracking (particle ID a plus here!) - High Granularity EM and HAD Calorimeter - Knowing initial conditions, like energy of colliding particles/partons, facilitates measurements with taus - Not knowing initial conditions provides complications, but doesn't take you out of the game in a world of high statistics - Particle Discrimination (K, π , π^0) is required for precision measurements